Impact of Kura Clover Living Mulch on Nitrous Oxide Emissions in a Corn-Soybean System.

نویسندگان

  • Peter A Turner
  • John M Baker
  • Timothy J Griffis
  • Rodney T Venterea
چکیده

Nitrous oxide (NO), produced primarily in agricultural soils, is a potent greenhouse gas and is the dominant ozone-depleting substance. Efforts to reduce NO emissions are underway, but mitigation results have been inconsistent. The leguminous perennial kura clover ( M. Bieb.) (KC) can grow side-by-side with cash crops in rotational corn ( L.)-soybean ( L.) systems. With biological nitrogen fixation, KC provides land managers an opportunity to reduce external fertilizer inputs, which may diminish problematic NO emissions. To investigate the effect of a KC living mulch on NO emissions, automated soil chambers coupled to a NO analyzer were used to measure hourly fluxes from April through October in a 2-yr corn-soybean (CS) rotation. Emissions from the KC treatment were significantly greater than those from the conventional CS treatment despite the fact that the KC treatment received substantially less inorganic nitrogen fertilizer. A seasonal tradeoff was observed with the KC treatment wherein emissions before strip-tillage were reduced but were surpassed by high losses after strip-tillage and postanthesis. These results represent the first reported measurements of NO emissions from a KC-based living mulch. The findings cast doubt on the efficacy of KC for mitigating NO loss in CS systems. However, if KC reduces nitrate leaching losses, as has been reported elsewhere, it may result in lower indirect (offsite) NO emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops.

Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and NO emissions; second-generation cellulosic crops have the potential to reduce these N losses. We measured N losses and cycling in establishing miscanthus (), switchgrass ( L. fertilized with 56 kg N ha yr), and mixed prairie, along with a corn ( L.)-corn-soybean [ (L.) Merr.] rotati...

متن کامل

Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates appli...

متن کامل

Nitrous oxide emissions from corn-soybean systems in the midwest.

Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were establishe...

متن کامل

Emissions of nitrous oxide and ammonia from a sandy soil following surface application and incorporation of cauliflower leaf residues

Vegetable production systems are often characterized by excessive nitrogen (N) fertilization and the incorporation of large amounts of post-harvest crop residues. This makes them particularly prone to ammonia (NH3) and nitrous oxide (N2O) emissions. Yet, urgently needed management strategies that can reduce these harmful emissions are missing, because underlying processes are not fully understo...

متن کامل

Nitrous Oxide Emissions from Irrigated Cropping Systems

We evaluated the eff ects of irrigated crop management practices on nitrous oxide (N2O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha−1 during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn–dr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 45 5  شماره 

صفحات  -

تاریخ انتشار 2016